Happenlance»Blog

Sir Happenlance Devlog #4

This one's a doozy. I talk about new editor features, sprite serialization, new enemy behavior, game AI and game design, arrow physics, gif rendering, fast image resizing, and a new method for implementing a foolproof undo system.



As promised at the end of the video, here is the image resizing code as it currently exists:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include <tmmintrin.h> //requires SSSE3 for _mm_hadd_epi32 and _mm_shuffle_epi8
#include <stdint.h>

typedef struct Pixel { uint8_t r, g, b, a; } Color;
struct Image { Pixel * p; int w, h; inline Pixel * operator[] (int y) { return &p[y * w]; } };

Image downsize2x(Image in) {
    int w = in.w / 2, h = in.h / 2;
    Image out = { (Pixel *) malloc(w * h * sizeof(Pixel)), w, h };
    for (int y = 0; y < h; ++y) {
        int x = 0;
        for (; x < w - 3; x += 4) {
            __m128i p1 = _mm_loadu_si128((__m128i *) &in.p[(y * 2 + 0) * in.w + (x * 2 + 0)]);
            __m128i p2 = _mm_loadu_si128((__m128i *) &in.p[(y * 2 + 0) * in.w + (x * 2 + 4)]);
            __m128i p3 = _mm_loadu_si128((__m128i *) &in.p[(y * 2 + 1) * in.w + (x * 2 + 0)]);
            __m128i p4 = _mm_loadu_si128((__m128i *) &in.p[(y * 2 + 1) * in.w + (x * 2 + 4)]);
            __m128i i1 = _mm_avg_epu8(p1, p3), i2 = _mm_avg_epu8(p2, p4);
            __m128i s1 = _mm_and_si128(_mm_srli_epi32(i1, 1), _mm_set1_epi32(0x7F7F7F7F));
            __m128i s2 = _mm_and_si128(_mm_srli_epi32(i2, 1), _mm_set1_epi32(0x7F7F7F7F));
            __m128i d = _mm_hadd_epi32(s1, s2);
            _mm_storeu_si128((__m128i *) &out.p[y * w + x], d);
        }
        for (; x < w; ++x) {
            Pixel p1 = in.p[(y * 2 + 0) * in.w + (x * 2 + 0)];
            Pixel p2 = in.p[(y * 2 + 0) * in.w + (x * 2 + 1)];
            Pixel p3 = in.p[(y * 2 + 1) * in.w + (x * 2 + 0)];
            Pixel p4 = in.p[(y * 2 + 1) * in.w + (x * 2 + 1)];
            out.p[y * w + x] = {
                (uint8_t) ((p1.r + p2.r + p3.r + p4.r) >> 2),
                (uint8_t) ((p1.g + p2.g + p3.g + p4.g) >> 2),
                (uint8_t) ((p1.b + p2.b + p3.b + p4.b) >> 2),
                (uint8_t) ((p1.a + p2.a + p3.a + p4.a) >> 2),
            };
        }
    }
    return out;
}

Image downsize4x(Image in) {
    int w = in.w / 4, h = in.h / 4;
    Image out = { (Pixel *) malloc(w * h * sizeof(Pixel)), w, h };
    for (int y = 0; y < h; ++y) {
        for (int x = 0; x < w; ++x) {
            __m128i p1 = _mm_load_si128((__m128i *) &in.p[(y * 4 + 0) * in.w + (x * 4)]);
            __m128i p2 = _mm_load_si128((__m128i *) &in.p[(y * 4 + 1) * in.w + (x * 4)]);
            __m128i p3 = _mm_load_si128((__m128i *) &in.p[(y * 4 + 2) * in.w + (x * 4)]);
            __m128i p4 = _mm_load_si128((__m128i *) &in.p[(y * 4 + 3) * in.w + (x * 4)]);
            __m128i r = _mm_avg_epu8(_mm_avg_epu8(p1, p2), _mm_avg_epu8(p3, p4));
            __m128i m = _mm_and_si128(_mm_srli_epi32(r, 2), _mm_set1_epi32(0x3F3F3F3F));
            __m128i h1 = _mm_hadd_epi32(m, m);
            __m128i h2 = _mm_hadd_epi32(h1, h1);
            _mm_storeu_si32(&out.p[y * w + x], h2);
        }
    }
    return out;
}

Image downsize8x(Image in) {
    int w = in.w / 8, h = in.h / 8;
    Image out = { (Pixel *) malloc(w * h * sizeof(Pixel)), w, h };
    for (int y = 0; y < h; ++y) {
        for (int x = 0; x < w; ++x) {
            __m128i p01 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 0) * in.w + (x * 8 + 0)]);
            __m128i p02 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 0) * in.w + (x * 8 + 4)]);
            __m128i p03 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 1) * in.w + (x * 8 + 0)]);
            __m128i p04 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 1) * in.w + (x * 8 + 4)]);
            __m128i p05 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 2) * in.w + (x * 8 + 0)]);
            __m128i p06 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 2) * in.w + (x * 8 + 4)]);
            __m128i p07 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 3) * in.w + (x * 8 + 0)]);
            __m128i p08 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 3) * in.w + (x * 8 + 4)]);
            __m128i p09 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 4) * in.w + (x * 8 + 0)]);
            __m128i p10 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 4) * in.w + (x * 8 + 4)]);
            __m128i p11 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 5) * in.w + (x * 8 + 0)]);
            __m128i p12 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 5) * in.w + (x * 8 + 4)]);
            __m128i p13 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 6) * in.w + (x * 8 + 0)]);
            __m128i p14 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 6) * in.w + (x * 8 + 4)]);
            __m128i p15 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 7) * in.w + (x * 8 + 0)]);
            __m128i p16 = _mm_load_si128((__m128i *) &in.p[(y * 8 + 7) * in.w + (x * 8 + 4)]);
            __m128i r1 = _mm_avg_epu8(_mm_avg_epu8(p01, p02), _mm_avg_epu8(p03, p04));
            __m128i r2 = _mm_avg_epu8(_mm_avg_epu8(p05, p06), _mm_avg_epu8(p07, p08));
            __m128i r3 = _mm_avg_epu8(_mm_avg_epu8(p09, p10), _mm_avg_epu8(p11, p12));
            __m128i r4 = _mm_avg_epu8(_mm_avg_epu8(p13, p14), _mm_avg_epu8(p15, p16));
            __m128i r = _mm_avg_epu8(_mm_avg_epu8(r1, r2), _mm_avg_epu8(r3, r4));
            __m128i m = _mm_and_si128(_mm_srli_epi32(r, 2), _mm_set1_epi32(0x3F3F3F3F));
            __m128i h1 = _mm_hadd_epi32(m, m);
            __m128i h2 = _mm_hadd_epi32(h1, h1);
            _mm_storeu_si32(&out.p[y * w + x], h2);
        }
    }
    return out;
}

Image bilinear(Image in, float scale) {
    int w = in.w * scale, h = in.h * scale;
    Image out = { (Pixel *) malloc(w * h * sizeof(Pixel)), w, h };
    float xs = in.w / (float) w, ys = in.h / (float) h;
    for (int y = 0; y < h; ++y) {
        for (int x = 0; x < w; ++x) {
            float x0 = (x + 0.5f) * xs, y0 = (y + 0.5f) * ys;
            int x1 = x0, y1 = y0;
            float xf = x0 - x1, yf = y0 - y1;

            Pixel p1 = in.p[(y1 + 0) * in.w + (x1 + 0)];
            Pixel p2 = in.p[(y1 + 0) * in.w + (x1 + 1)];
            Pixel p3 = in.p[(y1 + 1) * in.w + (x1 + 0)];
            Pixel p4 = in.p[(y1 + 1) * in.w + (x1 + 1)];

            __m128 v1 = _mm_cvtepi32_ps(_mm_set_epi32(p1.a, p1.b, p1.g, p1.r));
            __m128 v2 = _mm_cvtepi32_ps(_mm_set_epi32(p2.a, p2.b, p2.g, p2.r));
            __m128 v3 = _mm_cvtepi32_ps(_mm_set_epi32(p3.a, p3.b, p3.g, p3.r));
            __m128 v4 = _mm_cvtepi32_ps(_mm_set_epi32(p4.a, p4.b, p4.g, p4.r));

            __m128 r1 = _mm_add_ps(_mm_mul_ps(v1, _mm_set1_ps(1 - xf)), _mm_mul_ps(v2, _mm_set1_ps(xf)));
            __m128 r2 = _mm_add_ps(_mm_mul_ps(v3, _mm_set1_ps(1 - xf)), _mm_mul_ps(v4, _mm_set1_ps(xf)));
            __m128 c = _mm_add_ps(_mm_mul_ps(r1, _mm_set1_ps(1 - yf)), _mm_mul_ps(r2, _mm_set1_ps(yf)));

            __m128i i = _mm_cvtps_epi32(c);
            __m128i p = _mm_shuffle_epi8(i, _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12, 8, 4, 0));
            _mm_storeu_si32(&out.p[y * w + x], p);
        }
    }
    return out;
}
Simon Anciaux,
Thanks for the down sizing code. I had a hard time making a function to down size an image to an arbitrary resolution a few years ago. I never benchmarked the code or tried to do it in SIMD since it worked well enough for my use case (and I don't think the current code is SIMD friendly). So I'm interested in that resizing lib you might do.